Wreath Product Symmetric Functions
نویسندگان
چکیده
We systematically study wreath product Schur functions and give a combinatorial construction using colored partitions and tableaux. The Pieri rule and the Littlewood-Richardson rule are studied. We also discuss the connection with representations of generalized symmetric groups.
منابع مشابه
WREATH PRODUCT GENERALIZATIONS OF THE TRIPLE (S2n, Hn, φ) AND THEIR SPHERICAL FUNCTIONS
The symmetric group S2n and the hyperoctaheadral group Hn is a Gelfand triple for an arbitrary linear representation φ of Hn. Their φ-spherical functions can be caught as transition matrix between suitable symmetric functions and the power sums. We generalize this triplet in the term of wreath product. It is shown that our triplet are always to be a Gelfand triple. Furthermore we study the rela...
متن کاملFree quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
Abstract. We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ Sn and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf ...
متن کاملZonal polynomials for wreath products
The pair of groups, symmetric group S2n and hyperoctohedral group Hn , form a Gelfand pair. The characteristic map is a mapping from the graded algebra generated by the zonal spherical functions of (S2n, Hn) into the ring of symmetric functions. The images of the zonal spherical functions under this map are called the zonal polynomials. A wreath product generalization of the Gelfand pair (S2n, ...
متن کاملNew pattern matching conditions for wreath products of the cyclic groups with symmetric groups
We present several multi-variable generating functions for a new pattern matching condition on the wreath product Ck o Sn of the cyclic group Ck and the symmetric group Sn. Our new pattern matching condition requires that the underlying permutations match in the usual sense of pattern matching for Sn and that the corresponding sequence of signs match in the sense of words, rather than the exact...
متن کاملPartitions of Even Rank and Euler Numbers
This paper is based on an hour address given at the Sixth Conference on Formal Power Series and Algebraic Combinatorics, held at DIMACS in 1994. It is written primarily for an audience of combinato-rialists. Our hope is to publicise some intriguing enumerative conjectures which arise in the study of the homology representations of the poset of (set) partitions with an even number of blocks. The...
متن کامل